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Executive Summary 
The use of hand gestures provides an attractive alternative to cumbersome 
interface devices for human-computer interaction. In particular, visual 
interpretation of hand gestures can help in achieving the ease and naturalness 
desired. This has motivated a very active research area concern with computer 
vision-based analysis and interpretation of hand gestures. To enhance 
multimedia capabilities in an interactive large-screen display environment such 
as the Air Force Research Laboratory (AFRL) DataWall [1], it is imperative to 
explore practical and useful gesture recognition technology. Also, due to the 
large screen size (12' x 3') of the DataWall, oftentimes, it is difficult to precisely 
identify what information presented on the screen, someone in the audience is 
pointing to, during professional meetings or briefings. On the same token, a 
presenter pointing at information on the display by hand during the presentation 
cannot clearly be visualized and understood in the audience. Both scenarios 
result into a loss of effective communication. 
 
Implementing gesture tracking technology for the DataWall environment is a 
multiyear effort. The first step described in this report was to concentrate on 
investigating the feasibility of utilizing an image triangulation technique for 
accurately positioning and tracking a passive pointer pointing towards the 
DataWall. The pointer is marked with two distinct colors and can be tracked using 
two high resolution video cameras. The acquired images are then analyzed 
online to compute the pointer’s projected coordinates on the DataWall. 
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1 Scope 
The scope of this effort is to develop technology for building an integrated 
interactive display environment and intelligent interface for the Air Force 
Research Laboratory (AFRL) DataWall utilizing image triangulation technique to 
track a passive device pointing towards the DataWall. 
 

2 Introduction 
Hand gestures provide a useful interface for humans to interact with not only 
other humans but also machines. Especially for high degree-of-freedom 
manipulation tasks such as the operation of 3D objects in virtual scenes, the 
traditional interface composed of a keyboard and mouse is neither intuitive nor 
easy to operate. For such a task, we consider direct manipulation with hand 
gestures as an alternative method. This would allow a user to directly indicate 3D 
points and issue manipulation commands with his/her own hand. 
 
The idea led to many gesture-based systems using glove-type sensing devices in 
the early days of virtual reality research. Such contact-type devices, however, are 
troublesome to put on and take off, and continuously wearing such devices for a 
long time fatigues users. To overcome these disadvantages vision researchers 
tried to develop non-contact type systems to direct human hand motion [2, 3, and 
4]. These works had some instability problems particular to vision based 
systems. The most significant problem is occlusion. Vision systems 
conventionally require match of detected feature points between images to 
reconstruct 3D information. However, for moving non-rigid objects like a human 
hand, detection and matching of feature points is difficult to accomplish correctly. 
 
Providing a computer with the ability to interpret a human hand is a step toward 
more natural human-machine interactions. Existing input systems augmented 
with this, as well as such other human-like modalities such as speech recognition 
and facial expression understanding, will add a powerful new dimension to the 
range of future computer applications and the accessibility of existing ones. A 
wide spectrum of research is underway on the problem of gesture interpretation. 
The primary reason for the advancement is continuously falling expense of 
hardware and image grabbing and processing. Even color processing in now 
available and it is fast enough for pattern recognition. 
 
Currently there is no universal definition of what a gesture recognition system 
should do or even what is a gesture. Our definition of gesture form perspective of 
the computer is simply a temporal sequence of images of a hand. An element 
from a finite set of static hand poses is the expected content with an image 
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frame. A gesture is, therefore, a sequence of static hand poses. Poses are 
assumed to contain the identity of the hand shape and (possibly) the orientation, 
translation and distance from camera information. The spatio-temporal nature of 
the gesture data make the gesture state immeasurable at a given instance in 
time, but for each time step we can determine the static hand pose. A general 
gesture recognition system is depicted in Figure 1. Visual images of gestures are 
acquired by one or more cameras. They are processed in the analysis stage 
where the gesture model parameters are estimated. Using the estimated 
parameters and some higher level knowledge, the observed gestures are 
inferred in the recognition stage. The grammar provides a set of rules on which 
the gestures are interpreted. 

 

 
The project of developing and implementing gesture tracking technology for the 
interactive DataWall is an ambitious project and will take several years of effort. It 
encompasses several major steps which can be grouped into two major 
categories: 
 

A. Recognition and tracking of a color pointer 
B. Recognition and tracking of a hand gesture 

 
This work was devoted towards category A in which a passive color pointer 
marked with two distinct colors will be tracked using two high resolution cameras. 
The work can alternatively be viewed as the development of virtual pointer 
technology as opposed to commonly used laser pointer. The methodology is 
described in the following section. 
 

Figure 1  Gesture Interpretation System 
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3 Recognition and Tracking a Passive Pointer 

3.1 Technical discussion 
 
The procedure for recognition and tracking of a passive pointer marked with two 
distinct colors is described in this section based on the theory of image 
processing and analysis. Consider a system with two cameras of focal length f 
and baseline distance b as shown in Figure 2. The optical axes of the two 
cameras are converging with an angle θ and that all geometrical parameters (b, f, 
and θ) are known or estimated using a camera calibration technique [5-8]. A 
feature in the scene depicted at the point P is viewed by the two cameras at 
different positions in the image planes (I1 and I2). The origins of the each camera 
coordinate system is located at the camera’s center which is distance f away 
form the corresponding image planes I1 and I2, respectively. It is assumed, 
without loss of generality, that the world coordinate system (Cartesian 
coordinates X, Y, and Z) coincides with the coordinate system of camera 1 (left 
camera), while the coordinate system of camera 2 (right camera) is obtained 
from the former through rotation and translations. The plane passing trough the 
camera centers and the feature point in the scene is called the epipolar plane. 
The intersection of the epipolar plane with the image plane defines the epipolar 
line as shown in Figure 3. For the model shown in the figure, every feature in one 
image will lie on the same row in the second image. In practice, there may be a 
vertical disparity due to misregistration of the epipolar lines. Many formulations of 
binocular stereo algorithms assume zero vertical disparity. 
 

Figure 2  Non-Parallel Axes Camera Model 
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The point P with the world coordinates (X, Y, and Z) is projected on image plane 
I1 as point (x1, y1) and image plane I2 as point (x2, y2) as illustrated in Figure 2. 
Then, assuming a perspective projection scheme, a simple relation between the 
camera coordinates (x1, y1) and world coordinates (X, Y, and Z) can be obtained 
as 
 
x1 = f *X / Z  and  y1 = f *Y / Z      (1) 
 
 

 

 
 
Similarly, we can write 
 
x2 = f * x2^ / z2^ and  y2 = f * y2^ / z2^    (2) 
 
Where, coordinate system of camera 2 (x2^, y2^ and z2^) is related with respect to 
the world coordinate system by simply translation and rotation as 

Figure 3  The Epipolar Plane 
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x2^ = c X + s Z – b c’ 
y2^ = Y          (3) 
z2^ = -s X + c Z + b s’ 
 
Here, symbols c = cos (θ) and s = sin (θ), c’ = cos (θ/2) and s’ = sin (θ/2) are 
used. Substituting Eq. (3) into Eq. (2), we can write 
 
x2 = f [(c X + s Z – b c’) / (-s X + c Z + b s’)]     (4) 
y2 = f [Y/( -s X + c Z + b s’)] 
 
Combining Eq. (1) and Eq. (4), lead to 
 
x2 = f [(f s +x1 c )Z – f b c’] / [(f c – x1 s )Z + f b s’]    (5) 
y2 = (f Z y1) / [(f c – x1 s)Z + f b s’] 
 
It can be observed for Eq. (5) that the depth Z of P can be estimated if its 
projections (x1, y1) and (x2, y2) on image planes I1 and I2, respectively, are known. 
That is for a given point (x1, y1) on I1, its corresponding point (x2, y2) on I2 should 
be found. Hence, defining a disparity vector d = [dx, dy]T at location (x2, y2) of 
camera 2 with respect to camera 1 
 
dx = x1 – x2          (6) 
             f b (f c’ + x1 s’) + [ x1(f c – x1s) - f (f s + x1c) ]Z 
     =   

         (f c – x1 s)Z + f b s’ 
 
dy = y1 – y2          (7) 

  f b s’ y1 +[ (f c – x1 s) - f ] y1 Z 
     =   

  (f c – x1 s)Z + f b s’ 
 

If the disparity vector d is known, Eqs. (6-7) reduce to an over determined linear 
system of two equations with a single unknown, Z (the depth) and a least-
squares solution can be obtained [9]. When cameras axes are parallel (i.e., θ = 
0) the above equations (Eqs. (6-7)) can be simplified to (see Ref. [10] and Fig. 5) 
 
dx = f b / Z and dy = 0        (8) 
 
Thus, the depth at various scene points may be recovered by knowing disparities 
of corresponding image points. 
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3.2 Color Representation and Detecting Two-Color Ends of a 
Pointer 

 
Each pixel in RGB color space can be expressed in a vector form as 
 
P (I, J) = R (I, J) i + G (I, J) j + B (I, J) k      (9) 
 
The image pixel coordinates are (I, J) and i, j, and k are unit vectors along R, G, 
and B color space, respectively. Since we are only interested in matching the 
pointer’s red and blue color ends of each image respectively, Equation (9) can be 
simplified as 
 
P (I, J) = R (I, J)         (10) 
 
when the red color end is considered and 
 
P (I, J) = B (I, J)         (11) 
 
for the blue color end. Note that P (I, J) is mathematically scalar quantity. We can 
now scan each image to find all pixels and corresponding locations for particular 
color end. We compute the centroid of each color end. That is for the red color 
end as shown in Figure 5, image 1 (left), we have 

Figure 4  The Parallel Axes Camera Model 
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P1 (I, J) = R1 (Imid, Jmid)        (12) 
 
Where, 
 
Imid = Imin + (Imax – Imin)/2 
 
Jmid = Jmin + (Jmax – Jmin)/2 
 

 

The terms mid, min and max correspond to the mid point, minimum location and 
maximum location of the color within that particular color end. Note that the 
image has to be searched to find the min and max locations. The term centroid 
and mid point of the color end are interchangeable because of the two-
dimensional coordinate system representation. Similarly, we can compute the 
centroid of the red color end in image 2 (right) as 
 
P2 (x, y) = R2 (Imid, Jmid)        (13) 
 
We assume that the centroid points P1 (I, J) and P2 (I, J) represent the matching 
points. This assumption is valid because the pointer dimensions are very small in 
comparison with the dimension of the DataWall room. Note the image size. Thus, 
the implication is that the process of disparity analysis is not required and the 
task of finding matching pixel is considerably simplified. The same analysis can 
be applied for finding the matching points corresponding to the blue color end of 

Figure 5  Color Vector Representation in RGB Space of Matching Pixels in Two Different Images 
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the pointer. It should be emphasized that we deliberately chose two distinct color-
ends to simplify and speed up the process of image scanning. One can choose 
other pixel matching methods depending upon their application. Knowing the x- 
and y- coordinates of each centroid point of the pointer in a single image; we can 
mathematically pass a line through these two points to describe a pointer in a 2D 
space. Now the process of triangulation in needed to compute the three-
dimensional coordinates of the pointer from these two images (i.e., four centroid 
points). 
 

3.3 Three-dimensional Triangulation Technique 
 
We apply ray casting analysis to triangulate three-dimensional coordinates of 
each image pixel point in a space as it viewed by two cameras with respect to a 
chosen reference frame. Without loss of generality, the reference fame could be 
at one of the cameras’ center. We have chosen camera 2 center location as the 
frame of reference. Each ray is cast from the viewpoint (here, center of the 
camera) through each pixel of the projection plane (here, image planes 1 and 2) 
into the volume dataset. The two rays wherever they intersect in a 3D space 
determines the coordinates of a point viewed in both camera as shown in Figure 
6. By connecting all intersecting points in the volume dataset, we can generate a 
3D point cloud floating in space. We utilize only four points (two in each image) to 
find the 3D position of the pointer. 

Figure 6  Ray Casting Configuration 
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3.4 Two Intersecting Line Problem 
 
The common point coordinate computation of rays reduces to a problem of two 
line intersection each defined by two points. One point on the line is defined by 
the camera center and the second point by a pixel in the image plane (i.e. P1 or 
P2 in Figure 7). For the point P1 of image 1, the coordinates of point P2 in image 2 
are already chosen based on the explanation presented earlier. 
 
Considering a general reference frame (x, y, z) as shown in Figure 7, point sets 
(C1, P1) and (C2, P2) are situated on line1 and 2, respectively. Since the points  
P1 (I, J) and P2 (I, J) are in pixel coordinates, they need to be converted into 
linear measurements by the transformation: 
 
x distance per pixel =  f *tan (half view angle of camera) 

        (14) 
(Image width in pixel) / 2 

 
Figure 7  Coordinate Computation for Two Lines of Intersection 
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Similarly, y distance per pixel can be correlated. Note that f denotes camera focal 
length. Because we are interested in computing coordinates of point P, let us 
define each point on the lines as 
 
P = x i + y j + z k         (15) 
P1 = Px1 i + Py1 j + Pz1 k 
P2 = Px2 i + Py2 j + Pz2 k 
C1 = C x1 i + C y1 j + C z1 k 
C2 = C x2 i + C y2 j + C z2 k 
 
Where i, j, and k are unit vectors along x, y and z axes, respectively. With the 
condition for the four points to be coplanar (the lines are not skewed), we can 
write 
 
(C2 – C1) • [(P1 – C1) x (P2 – C2)] = 0      (16) 
 
Where symbols • and x represent vector dot and cross product respectively. If s 
and t are scalar quantities then the common point can be represented 
parametrically as 
 
P = C1 + s (P1 – C1) = C1 + s A       (17) 
 
or 
 
P = C2 + t (P2 – C2) = C2 + t B 
 
Where s is given by 
 

[(C2 - C1) x B)] • (A x B) 
s =  

| A x B |2 
 

3.5 Accounting for a Camera Rotations 
 
Six degrees-of-freedom are required to describe a point in the three-dimensional 
space uniquely. One can choose three linear and three rotational coordinates. 
The three rotational motions of the camera can be accounted for while computing 
uniquely the pointer’s position in the 3D space. Defining each camera’s axis 
rotation as pitch, yaw and roll along x, y and z axes, respectively, as shown in 
Figure 8, we can write rotational transformations as 
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Where, the notations S(angle) = sin (angle) and C(angle) = cos (angle) are used. 
The combined transformation pitch-yaw-roll can be written as PYR 
  

Figure 8  Camera’s Pitch, Yaw, and Roll Axes 

(18) 
 
 
 
 
(19) 
 
 
 
 
(20) 

(21) 
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The world coordinates (x, y, z) are, thus, related to camera’s view coordinates (x’, 
y’, z’) as 

  
Note that inverse transformation is considered to account for the camera 
rotations. 
 

3.6 Point of Projection on the DataWall 
 
Knowing the three-dimensional coordinates of each end of the pointing device 
center (red and blue), we can identify and represent the pointer in a 3D space by 
a line passing through these two points. The pointing device passing through the 
points Pr and Pb as depicted in Figure 9. The projection of this line on a plane 
described by DataWall is of our interest. The problem is now reduced to finding 
coordinates of intersecting point between line and a plane as shown by point 
Pi in Figure 9. 

Figure 9  Three-Dimensional Pointer Projection on Datawall 

(22) 
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3.7 Equation of a Plane Describing the DataWall 
 
The standard equation of a plane in a 3D space is: 
 
Ax + By + Cz + D = 0        (23) 
 
Where, the normal to the plane is the vector (A,B,C). Given three points in space 
D1(x1,y1,z1), D2(x2,y2,z2), D3(x3,y3,z3) the equation of the plane through these 
points is given by the following determinants. 
 

 
 
 
Here, three points D1, D2 and D3 describes the DataWall referenced in the 
camera 2 coordinate system. Expanding the above gives 
A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2)     (25) 
B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2) 
C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2) 
D = - [x1 (y2 z3 - y3 z2) + x2 (y3 z1 - y1 z3) + x3 (y1 z2 - y2 z1)] 
 
Note that if the points are colinear then the normal (A,B,C) as calculated above 
will be (0,0,0). The sign of s = Ax + By + Cz + D determines which side the point 
(x,y,z) lies with respect to the plane. If s > 0 then the point lies on the same side 
as the normal (A,B,C). If s < 0 then it lies on the opposite side, if s = 0 then the 
point (x,y,z) lies on the plane. 
 

3.8 Intersection of Line and Plane 
 
The parametric representation of the equation of the line passing through points 
Pr (rx, ry, rz) and Pb (bx, by, bz) is made as 
 
P = Pr + u (Pb - Pr)         (26) 
 
Where, Pr and Pb are the center of red and blue color ends of the pointing 
device. The point of intersection of the line and plane can be found by solving the 
system of equations defined above (i.e., Eqs (23) and (26)). That is 
 

(24) 
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A (rx + u (bx - rx)) + B (ry + u (by - ry)) + C (rz + u (bz - rz)) + D = 0  (27) 
 
Solving for u 
 

         A*rx + B*ry + C* rz + D 
u =             (28) 

A (rx – bx) + B(ry – by) + C(rz – bz) 
 

Now plug it back into the equation of the line to get the point of intersection, Pi 
defined in Figure 9. It is reminded that when the denominator is 0 in u then the 
normal to the plane is perpendicular to the line. Thus the line is either parallel to 
the plane and there are no solutions or the line is on the plane in which case are 
infinite solutions. 
 

3.9 Recognition of a Hand Gesture 
 
Hand gestures can be classified into two classes: (1) static hand gestures which 
relies only on the information about the angles of the figures (hand posture) and 
(2) dynamic hand gestures which relies not only on the fingers’ flex angle but 
also the hand trajectories and orientations. In general, a hand gesture is 
expressed as a time series of hand position, orientation, and shape. Hand shape 
is most difficult to recognize, though, how it is recognized depends on how it is 
utilized. Since our goal is to develop a non-contact hand gesture recognizer 
which can be utilized in a virtual environment, it is sufficient to discriminate from 
among only a few typical hand shapes, such as the number of extended fingers, 
as graphical commands. 
 
For gesture interpretation system, there are four main components: gesture 
modeling, gesture analysis, gesture recognition and gesture based application 
systems. The fist phase of a recognition task (whether considered explicitly or 
implicitly) is choosing a model of the gesture. The mathematical model may 
consider both the spatial and temporal characteristic of the hand and hand 
gesture. Once the model is decided upon, an analysis stage is used to compute 
the model parameters form input image features. These parameters constitute 
some description of the hand pose or trajectory and depend on the modeling 
approach used. Among the important problems involved in the analysis are those 
of hand localization, hand tracking, and selection of suitable image features. The 
computation of model parameters is followed by gesture recognition. Here, the 
parameters are classified and interpreted in the light of the accepted model and 
perhaps the rules imposed by some grammar. Evaluation of a particular gesture 
recognition approach encompasses accuracy, robustness, and speed, as well as 
the variability in the number of different classes of hand/arm movements it 
covers. 
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4 Computer Simulation 
The feasibility of utilizing an image triangulation technique for accurately 
positioning and tracking a virtual pointer pointing towards DataWall was 
investigated. The modeling and simulation task was carried out in which synthetic 
images of the pointer (generated using Autodesk® 3ds Max®) were input to a 
Microsoft® Visual C++ program. Based on the theory described in the previous 
section a Visual C++ program was written which requires two cameras’ images as 
an input and determines the 3D coordinates of the pointer as well as the pointer’s 
pointing projection on the DataWall. The analysis is done on high resolution static 
images utilizing different room configurations. The projected locations of a virtual 
pointer on the DataWall were compared with the known locations retrieved from 
the 3ds Max® models.  The results were promising and the pointing accuracy of 
the pointer on the DataWall was in the neighborhood of 0.06 feet. This accuracy 
is regarded to be well within acceptable range.  
 
 Figure 10 describes various reference frames defined for testing the present 
methodology. The output results of the C++ algorithms are divided into three 
groups. One, the pointer’s pointing position accuracy on the DataWall without 
rotating any cameras; two, when camera rotations are included in the analysis; 
and three when pointer’s length variations are considered. Table 1 presents five 
different scenarios for the group one. The highlighted pink area describes 
changes in the configuration with respect to the case # 1. The output of the 
algorithm (the pointer’s projection on the DataWall) using triangulation method is 
compared with the corresponding retrieved values from 3ds Max® program. 
 

Figure 10  Definition of Reference Frames for Testing 
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The worse case scenario is off by 0.041 feet in y coordinate. The absolute 
average for all five cases is 0.006 feet and 0.034 feet in the x- and y- 
coordinates, respectively. These accuracies are considered reasonable for the 
specified goals. The simulation results are tabulated in Table 1. 

5 Camera Calibration 
The camera image quality should be high enough for the proposed project 
methodology to work. Commercially available video cameras capable of 
capturing images of 1920 x 1080 pixels at 60 frames per second were used. The 
cameras were a very new product at the time with a limited user interface for 
configuration. As a result there was some difficulty getting an acceptable image 
output from the cameras. The supplier was contacted and per their suggestion, 
the camera’s processing system was configured in a HyperTerminal mode. With 
many arbitrary trials, we were successful in getting improved images (see Figure 
11 below).  
 

Table 1  Positioning Accuracy Comparison 
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6 Image Acquisition and API Development 

6.1 Hardware Setup 
 
The system was configured to acquire two camera images simultaneously by 
installing two frame grabbers, X64-CL_iPro in a Dell 470 workstation. The cable 
connection to the frame grabber is shown in Figure 12 below. 
 

Figure 11  Image Acquired after Camera Calibration (1920 x 1080 pixels) 

Figure 12  X64-CL iPro Frame Grabber Cable Connection 
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DALSA Coreco’s Sapera LT 5.3 software was installed on the computer system. 
Furthermore, all other necessary application programs were installed. The API 
described below was developed based on Microsoft’s Visual C++ NET 2003. 
 
 
6.2 API Deployment 
 
The TwoCam – Stage 1 API views two cameras simultaneously when they are 
attached to two different frame grabbers. The program grabs images from a 
camera into a buffer in the host computer’s memory using Sapera LT ++ 
Acquisition and Buffer objects and then Transfer object to link them. Also, a View 
object is used to display the buffer.  
 
For each camera class the following objects were created: 
 
Acquisition object 
Buffer object 
Transfer object 
View object 
 
Note that separate class is needed for each camera. The program runs in a 
continuous mode via XferCamera = Grab ( ) object statement. If we use 
XferCamera = Snap ( ) object statement, the program snaps the view scene and 
terminates. This program mode is useful for static analysis. 
 
The program generates two outputs. One, specific parameters that were utilized 
in run mode are displayed in a command window as shown below (Figure 13): 
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The second output is dumped in a text file for further analysis and use. The 
program also displays two viewing windows. The camera viewing window for 
each camera is shown below (Figure 14). Here, a “test pointer” is being viewed 
simultaneously with both cameras.  

 

Figure 13  Command Output Window 

Figure 14 Acquisition of Two Simultaneous Images from Two Different Cameras 
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7 Conclusion 
An initial attempt was made with some success to develop an API for 
triangulating two images in order to track the pointing position of a passive 
pointer pointing toward the DataWall screen. Images are acquired and displayed 
simultaneously. The next step will require each image pixel to be split up into 
RGB color for further analysis. 
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